
Scroll White Paper
V 1.0

24 June 2024



Content Page

Abstract 3
Introduction 3

Background 3
Rollups 3
Scroll zkEVM 4

Technical Overview 4
Scroll zkRollup 4
Execution Environment 5
Transaction Life Cycle 5
Sequencing Transactions 6

The zkEVM 8
EVM Execution 8
Proving an EVM execution 10

Conclusion 12



Abstract

Scroll is a Layer 2 scaling solution for Ethereum that leverages zero-knowledge rollups 
(zk-rollups) to enhance scalability, reduce transaction costs, and maintain security and 
decentralization. This whitepaper outlines the architectural design and technical specifications, 
emphasizing its role in the Ethereum ecosystem and its potential to transform decentralized 
applications (dApps) by providing a more efficient and scalable infrastructure.

Introduction

Background

Ethereum, since its inception in 2015, has achieved a significant increase in user activity, 
leading to network congestion, high gas fees, and slower transaction times. These scalability 
issues are the result of making tradeoffs prioritizing security and decentralization. Various Layer 
2 solutions have been proposed and implemented to address these issues, with ZK rollups 
emerging as a preeminent solution due to their ability to enhance scalability without 
compromising security and without introducing additional trust assumptions for the user.

Rollups

Rollups are the most predominant layer 2 scaling solution in the Ethereum ecosystem and are 
viewed as a central part of the Ethereum roadmap. A rollup processes batches of transactions 
off-chain (i.e. not on layer 1), and then posts the resulting data on-chain (i.e. on layer 1).

The execution of each transaction is performed off-chain, and does not need to be re-executed 
by layer 1 nodes. This allows for high transaction throughput, without impacting the 
decentralization of layer 1. Rollups must safely handle state validation, verifiably publish chain 
data, give users sufficient notice before upgrades, and enable mechanisms for processing 
transactions if chain operators go offline or censor users.

Scroll must account for all of these in its protocol design, but our most novel contribution to the 
space is validating the state transition function for a set of incoming transactions. In order for a 
rollup to be secure, it must prove that its off-chain computation (the processing of transactions) 
was performed correctly. ZK rollups use zero-knowledge proofs as the mechanism for ensuring 
state-transition correctness, and the Scroll zkEVM is responsible for this in Scroll.

https://ethereum-magicians.org/t/a-rollup-centric-ethereum-roadmap/4698


Scroll zkEVM

Scroll zkEVM aims to provide a scalable, secure, and cost-effective solution for Ethereum by 
integrating zero-knowledge proof technology with the Ethereum Virtual Machine (EVM). By 
doing so, Scroll zkEVM ensures compatibility with existing Ethereum smart contracts while 
significantly improving transaction throughput and reducing costs. While we leverage the Scroll 
zkEVM for creating a scalable blockchain network, its uses extend to verifiable vulnerability 
reports for dApps, highly secure bridges, and more.

Technical Overview

Scroll zkRollup

Scroll’s network consists of three layers:

● Settlement Layer: provides data availability and ordering for the canonical Scroll chain, 
verifies validity proofs, and allows users and dapps to send messages and assets 
between Ethereum and Scroll. Scroll uses Ethereum as the Settlement Layer and 
deploys the bridge and rollup contract onto Ethereum.

● Sequencing Layer: contains an Execution Node that executes the transactions 
submitted to the Scroll sequencer and the transactions submitted to the L1 bridge 
contract and produces L2 blocks, and a Rollup Node that batches transactions, posts 
transaction data, and block information to Ethereum for data availability, and submits 
validity proofs to Ethereum for finality.

● Proving Layer: consists of a pool of provers that are responsible for generating the 
zkEVM validity proofs that verify the correctness of L2 transactions, and a coordinator 
that dispatches the proving tasks to provers and relays the proofs to the Rollup Node to 
finalize on Ethereum.



Execution Environment

Scroll takes the EVM as a starting point for how the network behaves, with a codebase based 
on Ethereum mainnet’s pre-eminent geth node. Minimal modifications are made to support 
additional rollup mechanisms, including modifying the state tree to better support ZK proving, 
and the introduction of L1 Message Transactions for coordinating with incoming information 
from L1.

Transaction Life Cycle

The transaction life cycle in the Scroll contains the following three phases:

1. Confirmed: Users submits a transaction to either the L1 bridge contract or L2 
sequencer. The transaction becomes Confirmed after it gets executed and included in 
an L2 block.

2. Committed: The transactions are included in a batch and a commit transaction that 
contains the data of this batch is submitted to L1. After the commit transaction is 
finalized in the L1 blocks, the transactions in this batch become Committed.

3. Finalized: The validity proof of this batch is generated and verified on the L1. After the 
finalize transaction is finalized on L1, the status of the transaction is Finalized and 
becomes a canonical part of the Scroll L2 chain.

[The next section on ‘Sequencing Transactions’ can be found on the next page.]



Sequencing Transactions

The L2 sequencer contains three modules:

● Sync service subscribes to the event issued from the L1 bridge contract. Once it detects 
any newly appended messages to the L1 inbox, the Sync Service will generate a new 
L1MessageTx transaction accordingly and add it to the local L1 transaction queue.

● Mempool collects the transactions that are directly submitted to the L2 sequencer.
● Executor pulls the transactions from both the L1 transaction queue and L2 mempool, 

executes them to construct a new L2 block.

The rollup node contains three modules:

● Relayer submits the commit transactions and finalizes transactions to the rollup contract 
for data availability and finality.

● Chunk Proposer and Batch Proposer propose new chunks and new batches following 
the constraints described in the Transaction Batching.

The rollup process can be broken down into three phases: transaction execution, batching and 
data commitment, and proof generation and finalization.

https://docs.scroll.io/technology/chain/transactions#transaction-batching


Phase 1. Transaction Execution

1. Users submit transactions to L1 bridge contract or L2 sequencers.
2. The Sync Service in the L2 sequencer fetches the latest appended L1 transactions from 

the bridge contract.
3. The L2 sequencer processes the transactions from both the L1 message queue and the 

L2 mempool to construct L2 blocks.

Phase 2. Batching and Data Commitment

1. The rollup node monitors the latest L2 blocks and fetches the transaction data.
2. If the criterion (described in the Transaction Batching) are met, the rollup node 

proposes a new chunk or a batch and writes it to the database. Otherwise, the rollup 
node keeps waiting for more blocks or chunks.

3. Once a new batch is created, the rollup relayer collects the transaction data in this batch 
and submits a Commit Transaction to the rollup contract for data availability.

Phase 3. Proof Generation and Finalization

1. Once the coordinator polls a new chunk or batch from the database:
○ Upon a new chunk, the coordinator will query the execution traces of all blocks in 

this chunk from the L2 sequencer and then send a chunk proving task to a 
randomly selected zkEVM prover.

○ Upon a new batch, the coordinator will collect the chunk proofs of all chunks in 
this batch from the database and dispatch a batch proving task to a randomly 
selected aggregator prover.

2. Upon the coordinator receives a chunk or batch proofs from a prover, it will write the 
proof to the database.

3. Once the rollup relayer polls a new batch proof from the database, it will submit a 
Finalize Transaction to the rollup contract to verify the proof.

Commit Transaction

The Commit Transaction submits the block information and transaction data to L1 for data 
availability. The transaction includes the parent batch header, chunk data, and a bitmap of 
skipped L1 messages. The parent batch header designates the previous batch that this batch 
links to. The parent batch must be committed before; otherwise, the transaction will be reverted.

Finalize Transaction

The Finalize Transaction made to the L1 finalizes the previously-committed batch with a validity 
proof. The transaction also submits the state root and the withdraw root after the batch.

At this stage, the state root of the latest finalized batch can be used trustlessly and the 
withdrawal transactions in that batch can be executed on L1 using the Merkle proof to the 
withdraw root.

https://docs.scroll.io/technology/chain/transactions#transaction-batching


The zkEVM
The zkEVM is the core of Scroll’s technology, enabling the generation of zk proofs for 
Ethereum-like transactions. This allows Scroll to maintain compatibility with existing Ethereum 
tools and applications while offering enhanced scalability.

Collaboration with PSE and Halo2

Scroll’s zkEVM is built in collaboration with the Privacy and Scaling Explorations (PSE) team 
and leverages Halo2, an advanced proving system. This collaboration ensures that Scroll 
benefits from cutting-edge research and technology in zk proof systems.

Hardware-Focused Design

Scroll’s zkEVM is designed with a focus on hardware optimization, utilizing GPU provers to 
accelerate proof generation. This hardware-focused approach ensures that Scroll can handle 
high transaction volumes with lower latency.

EVM Execution

In order to understand how to build a zkEVM, which proves the execution of the EVM, we need 
to first look at the EVM itself.

The EVM can be modeled as a state transition function. It specifies a transition function f that, 
given an initial world state S and a transaction T, outputs a new world state S’: f(S,T) = S'.

The “world state” is modeled as a modified Merkle-Patricia Trie (MPT). This trie contains all of 
the network’s persistent data. This includes the information of all externally-owned accounts 
(EOAs) and smart contract accounts. Smart contract accounts have sub-tries that hold the smart 
contract’s bytecode and persistent storage.

The EVM processes a new transaction by executing its resulting computations and making 
changes to the world state accordingly. EVM computation works over transient data stores 
(stack and memory) as well as persistent data stores (contract bytecode and storage).

A diagram to explain this can be found on the next page at Fig. 1.



(Fig. 1.)

The computation triggered by an individual transaction is broken down into small machine 
instructions called “opcodes,” which the EVM can directly understand and execute. The 
behavior of each opcode is specified in the Ethereum Yellow Paper. The execution of a 
transaction can therefore be summarized by an “execution trace,” which is simply an ordered list 
of opcode executions. Ethereum execution clients, such as Geth, can explicitly output a 
step-by-step execution trace for the computation it has performed.

A diagram to explain this can be found on the next page at Fig. 2.



(Fig. 2.)

As the opcodes are executed, the state trie is altered. This results in a new state trie, with a new 
state root.

Proving an EVM execution

The goal of a zkEVM is to generate a proof attesting to the validity of a transaction’s execution. 
In other words, given an initial world state S, a transaction T, and a resulting world state S', the 
zkEVM must generate a proof that f(S,T) = S', where f is the state transition function 
specified in the Ethereum Yellow Paper.

In order to prove the validity of the transition function execution, we break down the execution 
into its step-by-step execution trace. The execution of f(S,T) is expanded into a list of its 
sequential opcode executions. The execution trace serves as a “witness” attesting to the 
correctness of the state transition f(S,T) = S' - the trace in a sense a step-by-step 
explanation of how the state transitions from S to S'.

The problem is then reduced to proving the following:



● The execution trace is correct.
○ Each individual opcode is correctly executed according to the Ethereum Yellow 

Paper spec.
■ For example, the ADD opcode must result in popping two values off the 

stack, and pushing their sum to the stack.
■ A proof must show that each opcode was executed with the proper 

behavior, including any alterations to transient data stores (stack and 
memory) or persistent data stores (contract bytecode and storage).

○ The ordered list of opcodes being executed is in fact the correct list of opcodes 
triggered by the transaction.

■ This includes correctly loading the initial transaction calldata, and the 
bytecode for any invoked contracts.

● The execution trace starts with initial state S and results in state S'.

This process is explained here in Fig. 3. 

(Fig. 3.)



Conclusion
Scroll represents a significant advancement in Ethereum scaling solutions, leveraging zkEVM 
technology to offer a scalable, secure, and efficient rollup solution. By integrating advanced zk 
proof systems and optimizing for hardware performance, Scroll is positioned to address the 
scalability challenges of Ethereum while maintaining compatibility with the broader Ethereum 
ecosystem.

This whitepaper outlines the technical components of Scroll, highlighting its enhancements over 
the base Ethereum protocol and detailing the mechanisms that ensure its security and 
efficiency.

For further details and technical specifications, please refer to the Scroll zkEVM documentation 
and resources available on the official website.


